Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae.

نویسندگان

  • Meng Chen
  • Taulant Mertiri
  • Thomas Holland
  • Amar S Basu
چکیده

It is well known that biological systems respond to chemical signals as well as physical stimuli. The workhorses of high throughput screening, microplates and pipetting robots, are well suited for screening chemical stimuli; however, there are fewer options for screening physical stimuli, particularly those which involve temporal patterns. This paper presents an optical microplate for photonic high-throughput screening. The system provides addressable intensity and temporal control of LED light emission in each well, and operates on standard black-wall clear-bottom 96-well microplates, which prevent light spillover. Light intensity can be controlled to 7-bit resolution (128 levels), with a maximum intensity of 120 mE cm(-2). The temporal resolution, useful for studying dynamics of light-driven bioprocesses, can be as low as 10 μs. The microplate is used for high-throughput studies of light-dependent growth rates and photosynthetic efficiency in the model organism Dunaliella tertiolecta, a lipid-producing algae of interest in 2(nd) generation biofuels. By conducting 96 experiments in parallel, photoirradiance studies, which would require 2 years using conventional tools, can be completed in <2 weeks. In a 12 day culture, algal growth rates increase with total photon flux, as expected. Interestingly, the lipid production efficiency, defined as lipid production per unit photon flux per capita, increases nearly 5 fold at low light intensity (constant light) and at low duty cycle (pulsed light). High throughput protocols enabled by this system are conducive to systematic studies and discovery in the fields of photobiology and photochemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy

The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal ...

متن کامل

Enhanced Lipid Productivity and Photosynthesis Efficiency in a Desmodesmus sp. Mutant Induced by Heavy Carbon Ions

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy (12)C(6+) ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity...

متن کامل

Nootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method

The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...

متن کامل

A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of ad...

متن کامل

Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae <i>Chlamydomonas reinhardtii</i>

The use of microalgae as a biofuel feedstock is highly desired, but current methods to induce lipid accumulation cause severe stress responses that limit biomass and, thus oil yield. To address these issues, a high throughput screening (HTS) method was devised to identify chemical inducers of growth and lipid accumulation. Optimization was performed to determine the most effective cell density,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 12 20  شماره 

صفحات  -

تاریخ انتشار 2012